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Synopsis:

Attention is a crucial parameter for inducing plasticity in
stroke patients. Shift of attention are infrequent during exper-
imental setting but are commonly present in clinical setting.
Brain Computer Interface (BCI) systems rely heavily on atten-
tion during information processing. The aim of this study was
to evaluate the effect of visual, real-time feedback in subjects
attention. Eleven healthy subjects participated in a crossover
study setup with two sessions: without feedback and with feed-
back. During these sessions, subjects were asked to perform
ankle dorsiflexion (main task), while counting oddball tone se-
quences (secondary task to divert the attention). Therefore,
two different attention states were recorded in each session (fo-
cused and diverted attention from the main task). Accuracy,
True Positive Rate (correctly classified diverted attention tri-
als) and True Negative Rate (correctly classified focused atten-
tion trials) were calculated after the two sessions to evaluate
subjects’ performance. Results showed 51.11±9.39% mean ac-
curacy, 49.33 ± 19.60% mean TPR, 52.89 ± 23.98% mean TNR
for the without feedback session; whereas for the feedback ses-
sion, were 57.33 ± 8.00% mean accuracy, 52.44 ± 20.24% mean
TPR, 62.22±22.73% mean TNR. Repeated measures ANOVA
showed no significant difference for neither TPR nor TNR.
The little variation in TPR suggest that concentration is not
increase during the oddball trials, but the increase in TNR
during the feedback session implies that feedback helped the
subjects to understand the paradigm and increase the accuracy
with respect to the without feedback session. Therefore feed-
back increases the concentration on the experiment but not on
dorsiflexion exclusively.

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the author.
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Preface

This semester project has been made by students from Biomedical Engineering and Infor-
matics from Aalborg University in a period from the 1st of February until the 2th of June
2017. The theme for the project was "Biomedical Signals and Information". The aim of the
project was to work on BCI systems and develop an online paradigm to show the effect of
feedback on attention diversion.

Aalborg University, 2th of June 2017
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Chapter 1

Anatomy and Physiology

1.1 The nervous system

The nervous system is made by all nerve cells in the human body and its extreme importance
is given by the fact that allows the communication of information from the brain to virtually
all the body parts and viceversa. The nervous system is the means by which we intend to
move and we deliver the intention to the muscles responsible for the action. It is basically
subdivided into central, peripheral and autonomic nervous system. On the following pages,
an introduction to central and peripheral nervous system will be given. The central nervous
system is made by brain and spinal cord. The brain acts as central processor for pieces of
information brought by the spinal cord. At the brain level, inputs are received and at cortical
level they are converted into perception. These perceptions might activate a response that
will travel from the brain to the effectors located at the periphery on the controlateral side.
Decussation is when a stimulus travelling from the center to the periphery (or vice versa),
changes side along the nervous system. For example, a pinch on the right hand will be
interpreted on the left side of the brain. In the same way, a motor command coming from
the left side of the brain will be directed to a right sided extremity in the body.[1]
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Figure 1.1: Decussation of a stimulus from the point of stimulation
to the brain.

1.2 The brain
As previously mentioned, the brain is the central processing unit of the body. The brain is
a spongy organ made up of nerves and supportive tissues located in the head. The lower
part of the brain is connected to the spinal cord. The brain has three main parts: cerebrum,
cerebellum and brainstem.[2] The cerebrum is the largest part of the brain. It is divided
into two halves called the “left” and “right” cerebral hemispheres. The two hemispheres are
connected by a bridge of nerve fibres called the “corpus callosum”. The right hemisphere is
known to control the left side of the body while the left hemisphere is known control the
right side of the body. The outer surface of the cerebrum is called "cerebral cortex" or "grey
matter". It is the area of the brain where nerve cells make synapses. The inner area is defined
as "white matter" because the insulation around the axons appears white.[2] The cerebrum
is further divided into four sections called lobes. These include the frontal (front), parietal
(top), temporal (side) and occipital (back) lobes. Each lobe has different functions:

• The frontal lobe controls movement, speech, behaviour, memory, emotions and intel-
lectual functioning, such as thought processes, reasoning, problem solving, decision
making and planning.
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• The parietal lobe controls sensations, such as touch, pressure, pain and temperature.
It also controls spatial orientation (understanding of size, shape and direction). Fur-
thermore it is involved in sensory integration.

• The temporal lobe controls hearing, memory and emotions. The left temporal lobe
also controls speech.

• The occipital lobe controls vision.

Figure 1.2: Gross Anatomy of the Brain. Source:Foundamental of
Human Anatomy and Physiology. 9th Edition. Martini and Nath

1.3 Motor Cortex

Many areas in the brain are related to human movement, one of the most important is the
primary motor cortex (M1). M1 is located in the frontal lobe, along with the precentral
gyrus. The role of the primary motor cortex is to generate impulses aimed to control the
execution of movement. Signals from M1 decussates to activate skeletal muscles on the
opposite side of the body. The body is somatotopically represented on the motor cortex, for
example the foot is next to the leg which is next to the trunk which is next to the arm and
the hand . The amount of brain involved with a body part represents the amount of control
that the primary motor cortex has over that body part. For example, a lot of cortical space
is required to control the complex movements of the hand and fingers, and these body parts
have larger representations in M1 than the trunk or legs. This disproportion of the body
map on the motor cortex is known as motor homunculus (shown in figure).
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Figure 1.3: Representatin of the Homunculus. Source: Max
Planck Florida Institute for Neuroscience

1.4 Brain Waves

Cortical activity is associated with neuron postsynaptic potentials. When multiple neurons
fire at the same time and in synchrony, the firing effects sums up and generates an electric
field, which propagates throughout a volume conductor made of brain tissue, skull, skin and
hairs. The electrical field can be measured from the scalp via EEG measuring systems. Brain
waves have 3 important physical descriptors. Frequency: is the speed of an oscillation and
it’s measured in Hertz (Hz), indicating the number of oscillations per second. Power: is the
amount of energy in a frequency band. Phase: The phase is the amount of synchronisation
across firing neurons. Billions of neurons in the human brain have complex firing patterns.
Neural oscillations that can be measured with EEG are even visible in raw, unfiltered, un-
processed data. These oscillations are a mix of many oscillations which correspond to states
different states of the brain. These frequencies are classified based on frequency ranges, also
known as frequency bands: Delta band (1–4 Hz), Theta band (4–8 Hz), Alpha band (8–12
Hz), Beta band (13–25 Hz) and Gamma band (>25 Hz).[3]

1.4.1 Delta Waves

Delta waves are the slowest and highest amplitude among the brainwaves. They oscillate
in between 1 and 4 Hz [3]. Delta waves are only present during deep non-REM sleep. The
stronger the delta rhythm, the deeper the sleep. It has been shown that Delta frequen-
cies are stronger in the right brain hemisphere and since sleep is associated with memory
consolidation, delta frequencies play a key role in acquiring skills and learning information.
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1.4.2 Theta Waves

Theta waves have a frequency of oscillations within the 4–8 Hz frequency range [3]. Theta
frequencies become stronger with increasing task difficulty. Theta waves have been associated
with brain processes under mental workload or working memory [4][5]. It has been suggested
that theta waves serve as connections of brain regions located further apart, during cognitive
processes.[6]

1.4.3 Alpha Waves

Alpha is defined as rhythmic oscillatory wave with a frequency range of 8–12 Hz [3]. Alpha
waves are generated in posterior cortical sites, including occipital, parietal and posterior
temporal brain regions. Alpha waves reflects activities related to sensory, motor and memory
functions. On the other side, alpha waves power is greatly reduced during mental activities
or activities involving body movement. Alpha brain waves suppression are a strong mark
suggesting engagement and focused attention towards any type of stimulus [7]. Furthermore,
Alpha waves are used for comparing relaxation state induced by meditation in experienced
versus beginner meditators[8] Attention is closely related to alpha power.Distracted subjects
generally show higher amounts of alpha wave power in experimental settings [9]

1.4.4 Beta Waves

Beta waves oscillates within the 12–25 Hz range [9]. This frequency is generated both in
posterior and frontal regions. Along the motor cortex beta wave power becomes stronger in
relation to the execution of a movement, especially with fine movements requiring attention.
It has been suggested that the brain mimics the movements of people that we observe, thus
indicating the presence of a “mirror neuron system” in the brain which is coordinated by
beta frequencies.

1.4.5 Gamma Waves

It is yet to be clarified where exactly in the brain gamma frequencies are generated and what
these oscillations actually mean. Some theories say that gamma, similar to theta, serves as
a link to several sensory impressions of an object and therefore attention. Other theories
argue that gamma waves are a byproduct of other neural processes such as eye-movements
and therefore do not actually express cognitive processing at all. Further studies are needed
to clarify the meaning of gamma waves.
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Chapter 2

Attention

2.1 Attention

According to William James (psychologist and philosopher), attention is controlling the
mind and select to deal with some tasks instead of others. Attention can be thought as
a highlighter among our tasks, the highlighted ones stand out from the rest. As you read
through a section of text in a book, the highlighted section stands out, causing you to
focus your interest on that area. But attention it is also a filter when competing stimuli
present to the body and it focuses more on certain stimuli instead of others because they
are not relevant at the moment. In this way the body can focus its resources on important
information. Studies have demonstrated that attention is limited in terms of capacity and
duration. [10][11] Attention plays a key role in subject undergoing a therapy since if attention
is low then no plasticity is evoked, irrespective of the correct association between the intent
and the reproduction of that movement[12]

2.1.1 Attention Shifting

Shift of attention occurs when there is a wanted increasing in focus on a specific task and
other stimuli are filtered.[13] Shifting of attention is needed to allocate attentional resources
to process information from a stimulus more efficiently. Researches have shown that when
there is attention on an object or an area, processing of the information operates more
efficiently.[14] When switching attention from a task to another one there is a loss in perfor-
mance because some effort is put into shifting the attention.[13] Different theories hypothesize
how the process of attention shifting might work and how actually does the attention change
through space.

2.1.2 Theories of Attention Shifting

One of the theories is the unitary resource model. According to this theory, attention is
a single resource that is shared among different tasks. When a task requires a certain
amount of attention, individuals voluntarily deliver attention resources to that task.[15] A
theory in opposition with the unitary resource model is the theory of multiple resource which

15
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states that different attentional resources exist for different sensory and response modalities.
[16] The moving-spotlight theory identifies attention as a movable spotlight that is directed
towards different targets, one at the time. When a task gets the attention, processing is more
efficient since there is an inhibition from any stimuli outside the attended task.[17] Finally,
has been proposed that attentions adheres to a gradient theory which states that resources
are given to a region in space rather than a single tasks. This also implies that the further
from the center an attention point is, the less the resource allocated for it. Attention can rise
and fall many times during different fixation times over time. This means that the attention
of a future state is dependent on where the previous attention state was directed.[18]

2.2 Overt and Covert Attention
Spatial attention can change with eyes opened or closed. The former case is known as “overt”
attention while the latter is defined as “covert attention”.[19] The human eye sharps focus
through the fovea. Eyes must continually move in order to direct the fovea to the target.
Before moving the eyes to the target overtly, covert attention shifts to this location.[20]
Although attention is also able to shift covertly while fixating.

2.2.1 Neurology of Overt and Covert Attention

Neurological studies on patients affected with brain damage were performed to identify the
nature of attention shift. Posner et al. [21], studied people with difficulty to move eyes vol-
untarily.The mid-brain area and associated cortical areas were found to be affected. Other
researches indicate differences in brain areas activated for overt attention shifts versus covert
shifts. The frontal cortex has been identified has location with high activity, especially the
central sulcus. Also the parietal and occipital cortices have been shown activity for overt and
covert attention shifts. [22] Many studies used fMRI to show that overt and covert atten-
tion activate the same areas (the frontal, parietal and temporal lobes) during task shifting.
Result have shown that there is often overlapping of area activated by attention shifting and
it has been suggested that overt and covert attention share the same neural mechanisms.
Switching from one task to another can happen voluntarily (endogenous control), or auto-
matically(exogenous control). In endogenous control attention is voluntarily directed on the
target while exogenous control attentions shifts automatically towards a stimulus.[23]

2.2.2 Neural overlap for Voluntary and Reflexive attention

Although it has been suggested by many studies that multiple areas of the brain are involved
in shifts of attention, it appears that no conclusion can be drawn regarding any overlap in
activation areas of voluntary versus reflexive attention. A study conducted by Rosen et al.
[24] showed overlap between endogenous and exogenous shifts of attention. Activation areas
were located in the dorsal and parietal premotor areas. Voluntary attention also showed
activation in the right dorsolateral prefrontal cortex. Since it is believed that this area is as-
sociated with working memory, it may suggest that working memory is engaged voluntarily.
Despite some differences, voluntary and reflexive shift of attention showed consistent overlap
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in the dorsal premotor region, the frontal eye field area, and the superior parietal cortex.[24]
Shift of attention comprehends several neural mechanisms. Despite the difference between
the nature of attention shifting it has been shown to be overlapping in neural activation
although the magnitude of activation may differ dependently to the attention shift. Re-
sources related to attention may depend on the nature of the attention shift, endogenous
versus exogenous. Lastly, attentional shift occurs across modalities and depends on different
properties in order to share attention and efficiently process information.
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Chapter 3

Brain Computer Interface

3.1 BCI
The goal of BCI technology is to give to severely paralyzed people another way to commu-
nicate, a way that does not depend on muscle control.” (Wadswoth Center) Brain Computer
Interface (BCI) is a systems capable of acquiring brain signals, analyze them, and translate
them into commands that are sent to devices in order to perform desired actions. The main
goal of BCI is to replace or restore useful function to people disabled by neuromuscular
disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury.
Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other
disorders and promising results suggest that BCI might augment performance of profession-
als in a medical setting. As discussed further in the following chapters, BCI need robust and
reliable signal-acquisition hardware that can be easily transported. BCI systems also need
paradigms to be validated real use case scenarios, use by people with severe disabilities,under
many environmental circumstances.[25]

3.1.1 What is a BCI

According to the Swartz Center for Computational Neuroscience, BCI is a system that takes
biosignal measured from a person and predicts (in real time on a single time basis) some
abstract aspects of the person’s cognitive state. Cognitive state has different aspects and
describe the brain state at a given moment. These aspect must be measurable with sufficient
single trial reliability. There are three main cognitive states: tonic, phasic and event related
state. In the tonic state it is measured the degree of relaxation. The phasic state helps to
determine attention switching. Finally, the event related show cognitive processes related to
stimuli given by the external environment.

Figure 3.1: Basic BCI Diagram
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There are three main BCI categories:

• Active BCI : Controlled by focus voluntary thoughts.

• Reactive BCI: Controlled by voluntary thoughts but using brain processes that happen
in response to external events.

• Passive BCI: Not controlled by thoughts. Any brain process is recorder and it is used
to analyse different other parameters. Several passive BCI may run in parallel since
they do not require attention on specific tasks.

3.1.2 Modern BCI Design

BCI are made of different systems responsible for input of brain signals, their amplifications
and analysis. BCI is a closed loop system in which the analyzed signal is reshaped and
shown on an output device accordingly to the end goal. Brain signals are recorded using
electroencephalogram (EEG) electrodes which are inexpensive devices that are coupled with
a gel solution in order to reduce impedance and thus get a better signal. Other recording
devices, less popular than EEG electrodes are microarrays and neurochips which are not
biologically sustainable and highly invasive because they have to be implanted on the brain
cortex.

Figure 3.2: Simple BCI Setup

3.1.3 Applications and Examples

The actual traditional population for BCI is made of severely disabled people. There are 2
main condition specifically: locked in Syndrome when a person is not able to move limbs due
to neurological disorder. The pathology locks patients in their own body. Communication at
this stage becomes crucial. Another condition is tetraplegia in which limbs become unusable.
For this special population there is wide use of speller programs which allow to send emails
or communicate with the external environment through brain signals sent by the patient to
the BCI software. Systems can be active (the patient actively send a signal to reach a goal)
or reactive (the patient reacts to the stimulus offered by the BCI program).

20
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Beside communication, BCI is also helpful in prosthetic control and wheel chair control.
Finally, BCI is applied in environmental control in smart house integrated systems.

Outside healthcare, BCI find a spot in drive safety (road danger or fatigue). Other BCI
system help to improve performance in jobs where attention is critical.

3.1.4 Scientific Challenge

From a scientific point of view is not a trivial topic because it entails many different disciplines
in from engineering and medicine fields such as signal processing, machine learning, neuro-
science, cognitive science and physics. Processing of information depends on parameters that
are unknown a priori thus increasing complexity of designing a paradigm. Parameters are
person-specific, task specific or specific to other aspects. Between subjects there is an high
degree of variability due in primis to biological/anatomical reasons. To state an example,
the folding of the brain cortex differs between people and thus relevant functional map dif-
fer across individuals. Furthermore, brain dynamics are non-stationary at all time scales.
Experimental setting may also make a difference in measurements since the position of the
sensors might actually differ within the same subject if for example EEG cap is replaced
during the experimental session. Sensitive measures are difficult to obtain since relevant
brain activities are small compared to artifacts and background activities of the brain, it
is therefore difficult to isolate the target signal. Giving the ability of neurons to be used
for different activities, it is difficult to isolate the effect of a specific phenomenon. Finally,
the physiology of the brain is not fully understood and this has an effect of the paradigm
performance. All the above listed challenges require the use of statistical approaches to cope
with uncertainty as well as sophisticated signal processing techniques. BCI systems must be
calibrated before they can be used. Calibration should be made with the highest amount of
information possible in order to widen the a priori knowledge.

3.1.5 Attention Shifting in BCI

When working with BCI in experimental settings, most of the studies have been performed
with very little noise and distractors. Although a real-life scenario is different since in a
hospital noise and distraction are present and furthermore subject get fatigued.[26][27] When
a BCI is designed for neuro-rehabilitation, a correct and reliable detection of movement (or
movement intention) plays a key role for the activation of the output device.[28] Studies
have shown that whenever the attention of a user shifts from the main task, the accuracy in
detecting the movement intention may be lower [29] [30]
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Chapter 4

Electroencephalogram

4.1 EEG
There are a lot of electrical processes in the brain since thousands of neurons fire and produce
an electric field. EEG, in fact, reads electrical signals from these firings coming from a large
population of neurons firing in synchrony. The main contribution of the firing signal is given
by pyramidal cells which are positioned radially to the brain cortex, thus, when they fire,
their electrical contribution adds up. This would not happen if neurons were positioned
parallelly to the cortex.

4.1.1 Event Related Potential

Event related potential (ERP) are defined as tiny voltages generated in the brain and they
are generated as a reaction of certain stimuli.[31] ERP can be triggered by several different
events such as sensory, motor and cognitive stimuli. They have been physically associated to
the synchronous firing of thousands (or even more) neurons when stimuli are processed.[32]
ERP are classified into two main categories depending on the their reaction time to the
onset of a stimulus. ERP that peak around 100ms after onset of the stimulus are defined
sensory (or exogenous) ERP since their peak depends on the stimulus. ERP generated in a
longer timeframe are defined as cognitive (or endogenous ERP) and they are related to the
interpretation of the stimulus at higher levels. There are different types of ERP waveforms
and they are described depending on latency and amplitude. For sake of simplicity, only
Movement Related Cortical Potential (MRCP) will be discussed.

4.1.2 Movemement Related Cortical Potential

Movement Related Cortical Potential (MRCP) is a negative shift shown in the EEG and
it’s triggered around 2 seconds prior onset of a voluntary movement and are referred to the
readiness of a movement. MRCP can be generated in relation to planning and execution
of a movement and takes the name of Contingent Negative Variation (CNV) while if it is
triggered as response for self-paced movement it is defined as Bereitschafts Potential (BP).
CNV originates between 2 and 1.5s, right in between the “Focus” and “Move!” stimulus.[33].
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It describes the readiness to act in response to a stimulus and it is thought to be related to
the anticipatory process. The early CNV is a response to the “Focus” signal and is maximally
present in the frontal cortex while later CNV starts around 1.5s before the “Move!” and has
maximal amplitude in the motor cortex. (C. H. M. Brunia, 2003) BP is defined as negative
cortical potential triggered between 1.5 and 1s prior the onset of a voluntary movement. [34].
It is mainly divided into two parts, a slow rising negative called “early BP” which is developed
1.5s prior the movement onset, and a second part defined as “late BP”, characterized by a
steeper slope developed 500ms before movement onset. MRCP also comprises other two
potentials defined as Motor Potential and Movement-Monitoring Potential (MMP), which
express movement execution and control of performance.[35] MRCP has been evaluated as
rehabilitation technique for supporting motor in healthy subjects as well as patients with
different pathologies such as Amyotrophic Lateral Sclerosis, tremor, Parkinson’s disease and
stroke.[36] MRCPs associated with imaginary tasks have been suggested being useful for
rehabilitation practice when the movement can be imagined.[37]

4.1.3 Spatial Characteristic of EEG

Spatial characteristics depend on brain anatomy. As discussed in the physiology chapter,
different parts of the brain react differently to stimuli of different nature. It is always
advisable to constrain the area of EEG analysis in order to pick up the best signal reducing
the noise coming from other areas which are not of interest. The brain cortex is associated
with defined areas of the body, this functional mapping is expressed using the concept of
“Homunculus”. In relation to the signal, a special attention has to be put on the source of the
EEG. From the neuron to the EEG electrode, there is a thick volume conductor made of skin,
skull and hair and furthermore the disposition of the neurons related to the cortex has its
importance. Due to the volume conductor, the energy coming from the neurons and read by
the electrodes is highly attenuated. Electrode placement follows the standardized location
system called “10-20” system which was created to ensure that positions are universally
labeled. The system names the positions with a letter which expresses the position (i.e.
frontal or central) and a number which expresses whether the electrode lies on the right
(even number) or left hemisphere (odd number) while the central position is expressed using
the letter “z”.
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Figure 4.1: 10-20 Electrode Disposition

4.1.4 Temporal Characteristics of EEG

Normally a neuron has a spiking behavior that matches the reported picture. Of course
the representation do not report only the spiking of a single neuron but instead the merged
spiking of thousands of them. EEG is filled with oscillatory processes such as the brain waves
described above in the brain waves section.

4.1.5 Artifacts

A artifact is anything that it is artificially introduced in EEG signal. Normally larger in
amplitude than EEG activity signal since they are made from i.e. big skeletal muscles
instead of small neurones. Artifacts may be internally generated, externally generated or
sensor related. Internally generated artifacts are generated in muscles located in the neck,
face, eyes and heart. Externally generated artifacts are noise with frequency between the
50-60 Hz interval and it is related to the equipment. Finally, as the name suggests, sensor
related sensors are due to sensors components such as thermal (surface electrode-skin) and
quantization noise.
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Figure 4.2: Example of muscle artifact

Eye blinks are signal characterized with large-low frequency peaks present mainly in frontal
channels.

Figure 4.3: Example of blinking artifact

4.1.6 EEG Acquisition

EEG systems use electrodes attached to the scalp to pick up electric potentials generated
by neurons in the brain. The electrode gel placed between the electrode and the skin func-
tions as capacitor and attenuates impedance. Commonly electrodes are made of silver but
alternatively on the market are present dry EEG electrodes which make direct contact with
the skin and thus do not require gel. Dry electrodes more convenient to apply, but are more
prone to artifacts.[38] The number and placement of electrodes depends on existing results
and findings, F.e. A pilot experiment is carried out before deciding the final placement of
the electrodes. MRI recordings might be useful in situations where experimenters have no
or little information about the process to analyse. In EEG, the amplitude of the potential is
measured as difference between a chosen electrode and the ground electrode and the poten-
tial between the reference and ground electrodes. Typical reference sites are the tip of the
nose and ears.
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4.1.7 Signal Processing in EEG

As previously mentioned, BCI is a mix of many different technical topics and it can be seen
differently depending on the used approach. In this section, signal processing techniques are
shown. Signal processing consists in taking a source signal as input, filter it and transform
it into another signal. A signal can be thought as a mapping from an index set into vector.
A BCI transduces the input signal x(n) into a control signal y(n). This translation is called
transformation:

y(n) = T [x(n)] (4.1)

A system is defined as static if the value y(n)depends only on x(n)at any sample, the system
is otherwise defined as dynamic. A system is called causal if the output y(n) depends only
on x(m)for m n, at any time. The system is otherwise defined non-causal. A system is called
time-invariant if y(n)=T[x(n)] with y(n-k) =T[x(n-k)] for every time k. Otherwise the system
is called time-variant. Finally, a system is linear if the equation T[a1x1(n)+a2xa(n)]is verified
for every input x1(n)and x2(n). Otherwise the system is defined nonlinear. BCI operates
in real time, they are therefore causal systems. Since temporal filter is performed in BCI
systems it can be said that BCI are dynamic. Normally BCI are not linear systems. The
major category of filters are static, spatial, temporal and spectral filters. Static filters are
normally used for signal squaring in which a static system takes an input signal and the
filter calculates the variance of it. Spatial filters operate across space. They convert a multi
channel input signal in a multichannel output signal. Spatial filters are important is BCI
due to the fact that the volume conductor around the signal source (the brain) is a linear
mapping. This assumption means that the mapping from the source to the sensor is linear
and it is therefore possible to establish the original signal at the source, starting from the
signal measured at the sensor. This allows to operate at the source level where signal is more
precise instead of sensor level where the signal is distorted by the volume conductor. An
example of spatial filter is the Surface Laplacian which is used for several purposes in BCI
research such as reducing spatial noise[39], constraining the potential source of the signal
[40] and has been shown to improve spatial resolution [41] which can be helpful in source
identification. Temporal filters transfer information across time. Temporal filters generate
an output signal on a channel that is dependent only on the same channel in a previous
moment in time. Temporal filters don’t process spatially across channels but only across
time. One of the most common temporal filters is the wavelet. The wavelet transform is a
trade off between spatial filtering and temporal filtering. Normal spatial filtering identifies
the frequencies in a certain location but the temporal feature is lost. Temporal filters are
accurate to describe when a frequency happens but omit the spatial feature. Wavelet filter
is not constant, it starts with analysing a small size window which will be highly accurate in
defining the temporal feature but it will identify only high frequencies.After the window has
analysed the whole signal, the identified frequencies are removed from the original signal. The
process iterates defining an analysis window which, at each step, is double in size compared to
the previous ones. Bigger analysis window allow to retrieve lower frequencies with less time
accuracy. Finally, spectral filter are temporal filter designed for their effect on the spectrum
of the signal. Examples of spectral filters are low pass, high pass, bandpass and notch filters
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and the main use in BCI is to isolate the ERP of interest. Any of the aforementioned filters
has a specific order which represents how many times will be the filter repetitively applied
on the source signal. To affect low frequencies the order must be high (large filter) while for
affecting high frequencies the order must be low (narrow filter).

4.1.8 Machine Learning

BCI systems use machine learning to understand and describe brain processes. Machine
Learning is based on trials and it is based on two main function, the supervised learning
function and the prediction function. The learning function takes as input some data which
is already labelled (a priori knowledge) and releases a model as output. This model will
be used for classifying new unlabelled data. Machine learning is needed in BCI due to the
high subject-to-subject variability or session-to-session variability that would necessitate the
system to be re-adapted for each session and for every user. Reference on the machine
learning approach used in the project can be found from section 5.1 onward.
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Chapter 5

Methodology

5.1 Experiment Basis

The objective of this section is to provide a common ground and understanding of the basis of
this work, including subject’s criteria, signal acquisition and the studied tasks. The described
methodology below was applied throughout the study.

5.1.1 Participants

The inclusion criteria for the experiment were healthy subjects, with no neurological condi-
tions nor auditory deficiencies, between the age range of 20-30 years old.

5.1.2 Signal Acquisition

EEG signals were recorded from AF4, FC3, FC4, C3, Cz, C2, C4, CP2, P3, P1, Pz and
P2 locations, according to the standard international 10–20 system. Reference electrode
was assigned to Fp1, and the ground electrode was placed on the left earlobe. EEG active
electrodes (g. GAMMAcap2, Austria) were used for the acquisition. EMG signals were
obtained using two monopolar surface gelled electrodes (Ambu Neuroline 720), placed at
the right tibialis anterior (TA), to monitor subject’s movement. All signals were recorded
with g.USBamp amplifier (gTec, GmbH, Austria), and sampled at 256 Hz (16 bits accuracy).

Force during dorsiflexion was recorded with pedal sensors and FollowMe LabView software,
using track mode configuration in a 300 s hold time.

5.1.3 BCI Tasks

As previously mentioned, the aim of this study was to evaluate the effect of feedback in a
BCI with attention variation. This attention difference implies two phases: one where the
subject is focused in the main task, and another one where subject’s attention is diverged
between the main task and an additional secondary task.
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During the experiment, subjects were asked to sit with their knees in a ninety-degree angle,
and their feet resting on facing pedals. A digital screen was in front of the subjects at a
one-meter distance to show the visual cue (see Figure 5.1) [42].

Figure 5.1: BCI setup based on [42]. Subfigure A shows the
position of the subject and screen. Subfigure B depicts the phases
and shape of the movement cue.

Main task: Motor movement

In this BCI configuration, the main task was cue-based dorsiflexion. The cue was visually
presented to guide the subjects during the movement performance. It included five stages:
Focus, Preparation, Execution, Hold and Rest. Focus and Rest phases were indicated with
the corresponding text displayed on the screen for a randomized time (between 2-3 s and
3-5 s, each). Preparation, Execution and Hold were mapped to a ramp function – low
state, increasing slope and high state, respectively (see Figure 5.1) [42]. A moving cursor
determined the change of phase in the ramp. Subjects had to sustain dorsiflexion during the
hold state, which lasted 2 s.
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Secondary Task: Auditory Oddball

To divert the attention of the participants, four tones, at frequencies: 700, 1200, 1700 and
2200 Hz with 0.5 s duration, were played during the main task. Both the order and timing
of the tones were randomized. Conventional headphones were used to play the sounds, and
loudness was adjusted for each participant.

Subjects were presented all tones twice at the beginning of each paradigm, and were re-
quested to count a specific two-tone sequence throughout the experiment. To encourage
sequence counting, subjects were randomly asked the number of sequences during the exper-
iment.

5.2 Pilot Studies: Experiment Optimisation

Several pilot studies were required to determine which processing analysis and paradigm
configuration was optimal to distinguish between focused and attention diversion trials.

5.2.1 PILOT I: Feature and Classifier Optimisation

Participants

Two healthy subjects (1 male and 1 female, mean age 25 years old), participated in this pilot
complying with the ethical agreement and inclusion criteria.

Signal Acquisition

Signal recordings were acquired as described before, during two sessions: one for focus (con-
trol) and one for attention diversion (attention). These sessions were separated by 5 min
to allow the subjects to rest.In the control session, subjects were just asked to perform the
main task, whereas in the attention session, both tasks were required. Both sessions were
composed of 30 dorsiflexion repetitions.

Signal Processing

All signal processing was carried out in MATLAB. Firstly, EMG signals were analyzed to
detect movement onsets. EMG signals were normalized and digitally filtered with a 4th
order Butterworth bandpass filter between 20-500Hz [43]. Samples corresponding to the first
second of the EMG signals, were set to the baseline value due to an artifact produced by
the automatic gain calibration of the amplifier. The power of the signal was calculated, and
inputted into a moving average smoothing operator (five-sample window span) to obtain the
envelope. Thresholds for movement onset were manually set for each subject and session,
based on these power envelopes.

The obtained movement onsets were used to extract the temporal and spectral features
of the classifier. MRCPs were computed by digitally filtering each EEG channel with a
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2nd order Butterworth bandpass filter from 0.5-3 Hz in the [-3,3] s window, centered at the
movement onset [44, 45]. Twenty temporal features were extracted from the MRCP, includ-
ing: Value Peak Negativity(VPN), Time Peak Negativity (TPN) and the mean slope and
variance over six time intervals ([-2,0], [-2, -1], [-1, 0], [-1, -0.5], [-0.5,0], [0, 1]). According to
[44], attention variations produce significant changes in the MRCP features in these windows.

Thirty spectral features were extracted for each channel. The mean power of the delta,
theta, alpha, beta and gamma brain waves was also computed for the six time windows
mentioned before. EEG channels were digitally filtered by a 4th order Butterworth band-
pass filter from: 0.05-3 Hz (delta), 4-7 Hz (theta), 8-13 Hz (alpha), 16-31 Hz (beta), 32-100
(gamma), to obtain the frequency bands.

MATLAB Classification Learner was employed to test features’ robustness and to identify
the optimal classifier. Classifiers were designed to be channel specific to localize the areas
more affected by shifts in attention, and reduce the number of channels in the future. For
this reason, neither dimensionality reduction nor spatial filtering were applied. Therefore,
for each channel, the temporal feature set, spectral feature set and the combination of both,
were evaluated using all fast-training MATLAB classifiers (Simple Tree, Medium Tree, Com-
plex Tree, Linear Discriminant, Quadratic Discriminant, Logistic Regression, Linear SVM,
Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse Gaus-
sian SVM, Fine KNN, Medium KNN, Coarse KNN, Cosine KNN, Cubic KNN, Weighted
KNN, Boosted Trees, Bagged Trees, Subspace Discriminant, Subspace KNN and RUSBoost
Trees). Five-fold validation was applied to calculate the accuracy of the classifier, defined as
the percentage of correctly classified samples over the total number of samples.

For each channel and feature set, maximum classification accuracy and used classifier were
stored. Classification accuracies of the three feature sets were compared within subjects to
select the optimal one. Similarities between the best performant channels and classifiers were
of special interest for next experiments.

Statistics

Repeated Measures ANOVA was used to evaluate the differences in classification accuracy
(dependent variable) generated by the three feature sets (within-subjects factor) for each
subject. Normality of the data was confirmed by Shapiro-Wilk test. Results were considered
significant for p ≤ 0.05.

5.2.2 PILOT II: Paradigm Optimisation

The results of the previous pilot study were used to design the first main experiment paradigm
(pilot II). The aim of this pilot was to evaluate the designed paradigm’s efficiency, to assess
the effect of visual feedback in subject’s attention.
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Participants

Seven healthy subjects (3 males and 4 females, mean age 26 years old), participated in this
pilot complying with the ethical agreement. Participants were divided into two groups: one
for testing without feedback (WOfeed) and the other one with feedback (WITHfeed). Both
groups were balanced and subjects were randomly assigned to each one (4 in WOfeed and 3
in WITHfeed).

Signal Acquisition

Signal recordings were acquired according to the Experiment Basis section. However, the
setup of this experiment was more complex than the previous pilot. To assess the effect of
feedback a training and testing paradigms were required.

During the training phase, control and attention sessions were separately recorded for 30
dorsiflexion repetitions each, as described in Pilot I. On the other hand, in the testing stage,
both trials were randomly intercalated for 60 dorsiflexion repetitions. The probabilities of
attention and control trials were 60% and 40%, respectively. WOfeed group was provided the
same visual cue as in training. However, for WITHfeed participants, the BCI screen was hor-
izontally divided to show the cue and the feedback. A colored rectangle was displayed during
the Rest phase to give subjects feedback about their performance. Green meant control (fo-
cus state), whereas red stood for attention (unfocused) trials. Subjects were encouraged to
focus more on the next dorsiflexion movement, if a red rectangle appeared.

Signal Processing

Calibration of the training paradigm
Firstly, the system was calibrated after acquiring the control and attention sessions. Based
on the results of Pilot 1, only the spectral features were extracted for each channel. In this
calibration phase, movement onsets were calculated based on the EMG signals. Ten-fold
validation was applied to the obtained spectral features to divide the data into training and
testing subsets, following a ratio of 9:1. This data was fed to the two classifiers with highest
accuracy in Pilot 1 (Trees and SVM). The classification error (CE), defined as the percentage
of misclassified samples, was subsequently computed. For each channel, only the classifier
with lower CE was considered. The five channels with lowest CE were selected for majority
voting in the online testing paradigm (WOfeed/ WITHfeed). Therefore, their corresponding
trained classifiers were stored and parallelly evaluated in the next paradigm.

Performance analysis of the testing paradigm
To compare the attention level of WOfeed and WITHfeed groups, the True Positive Rate
(TPR), True Negative Rate (TNR) and accuracy were calculated based on the results of the
majority voted classification. TPR was defined as the number of attention (unfocused) trials
that were classified correctly, whereas, TNR represented the number of control (focused) tri-
als classified correctly. Accuracy was calculated as the sum of the correctly classified samples
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divided by the total number of samples.

In order to assess similarities between subjects, the selected channels for majority voting
were also compared.

Statistics

Mixed ANOVA was applied to see the interaction in accuracy (dependent variable) between
calibration and online (within-subjects factor), and the WOfeed and WITHfeed paradigms
(between-subjects factor). T-test was used to evaluate the TNR between the WOfeed and
WITHfeed independent groups. Normality of the data was confirmed with Shapiro-Wilk
test. Results were consider significant for p =≤ 0.05

5.3 Main Experiment

The optimisations of the pilots, were used to refine the setup and paradigms of the main
experiment. The goal of this main experiment is to evaluate the effect of feedback in a BCI
with attention variations.

5.3.1 Participants

Eleven subjects (5 males and 6 females, mean age 25 years old) took part in this study in
accordance with the ethical agreement and inclusion criteria. Based on the results of Pilot
2, the parallel study structure was changed into a crossover study. Therefore, all subjects
performed both the WOfeed and WITHfeed. However, the order of these training sessions
was randomised and balanced (6 for WOfeed/ WITHfeed and 5 for WITHfeed/ WOfeed).
Two subjects from the same subgroup were discarded due to the high number of artifacts in
the signals.

5.3.2 Signal Acquisition

Signals were recorded following 5.1 . The low correlation between the offline training and
online testing classification accuracy, suggested that separated sessions of the control and
attention trials, do not provide a robust training for the online paradigm where both focus
and unfocused states are alternated. For this reason, the training paradigm was modified to
a single session of randomly alternated control and attention trials, with equal probabilities
(50%) during 50 dorsiflexion repetitions.

To maximise the similarity between the training and the testing, WOfeed and WITHfeed ses-
sions were also changed to 50 dorsiflexion repetitions with equally probable attention states.
Cue and feedback display remained the same. Subjects had ten-minute breaks between
sessions to minimise fatigue.
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5.3.3 Signal Processing

acquired signals were processed as described in Section ??. The mean power of the delta,
theta, alpha, beta and gamma waves was calculated for six time windows ([-2,0], [-2, -1],
[-1, 0], [-1, -0.5], [-0.5,0], [0, 1]) centred at the movement onset. In this case, movement on-
set calculation was based on the cue during calibration to enhance reproducibility between
paradigms. Channel-specific Trees and SVM classifiers were trained using ten-fold valida-
tion. The classifiers of the five channels with lowest classification error, were used during
the online testing (WOfeed/WITHfeed). The outputted class was calculated as the majority
voting of the parallel classification. A categorical analysis of the selected channels for all
subjects was carried out to assess similarities among the most attention-affected regions.

To evaluate the online testing, TNR, TPR and Accuracy were computed for both WOfeed
and WITHfeed as explained in Section ??. We hypothesised that feedback would increase
subjects’ concentration, increasing the false negative rate (attention trials classified as con-
trol), and thus, decreasing the TPR with respect to the WOfeed session.

5.3.4 Statistics

Two repeated measures ANOVA test was employed to study the effect of the feedback
paradigms (within-subjects factor) in TPR and TNR (dependent variables). In addition,
changes in classification accuracy (dependent variable) were also evaluated with a repeated
measures ANOVA, for the offline calibration an the testing paradigms (within-subjects fac-
tor). Shapiro-Wilk tests was used to check the normality of the data. Results were considered
significant for p ≤ 0.05.
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Results

6.1 PILOT I: Feature and Classifier Optimization

The results given in Table 6.1 and Table 6.2 show the maximum classification accuracy for
each subjects’ channel, with the employed classifier and feature set. In some cases, maximum
accuracies were reached with more than one classifier.

Repeated measures ANOVA showed significant interaction between subjects and feature
sets (p = 1.3 × 10−5). The Bonferroni pairwise comparison determined that temporal fea-
tures produced significantly lower classification accuracy than spectral (p = 6.14 × 10−10)
and the combination of all (p = 2.3 × 10−3). On the other hand, no significant improvement
in accuracy was found using all features instead of just the spectral set (p = 0.103). Finally,
the overall performance of the subjects was revealed to be significantly different (p = 0.021).

To better observe these performance differences, Figure 6.1 depicts the boxplot of each
feature set for each subjects. The median of the maximum classification accuracy for the
temporal features, is the lowest in both subjects. The combination of all features showed
the highest median accuracy for subject 1, but was surpassed by the spectral feature set in
subject 2.

Considering that computing all features did not significantly improve the classification ac-
curacy, spectral features were selected for the next studies. A categorical analysis of the
maximum accuracy generated by the spectral features, indicated that the most repeated
classifiers were variants of Trees and SVM (see Figure 6.2).

6.2 PILOT II: Paradigm Optimisation

The channels given in Table 6.3, represent the optimal channels (highest accuracy) for de-
tecting attention variations. The most repeated ones are: FC3 (in 5/7 subjects), FC4 (in
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Figure 6.1: (Pilot 1) Boxplot of the maximum classification ac-
curacies for each subjects’ channels. Blue boxes represent the in-
terquartile range, dotted black lines the lower and upper limits of
the data, and red asterisk outliers in the distribution.
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Figure 6.2: (Pilot 1) Categorical analysis of the number of ap-
pearances of each classifier in the maximum accuracy table for each
subjects’ channels. Note that the number of appearances separated
the channels with multiple classifiers into several instances.
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WOfeed subjects Ch1 Ch2 Ch3 Ch4 Ch5
sub 1 CP2 P2 FC4 Cz C2
sub 2 AF4 C2 CP2 P2 FC3
sub 4 P1 FC3 P2 Cz AF4
sub 6 AF4 FC3 C4 FC4 CP2
WITHfeed subjects Ch1 Ch2 Ch3 Ch4 Ch5
sub 3 Pz C3 P1 P3 FC4
sub 5 Pz C3 P3 FC3 P1
sub 7 FC4 P2 C3 C2 FC3

Table 6.3: (Pilot 2) Channels with lowest CE in calibration, for
WOfeed and WITHfeed subjects

4/7 subjects) and P2 (in 4/7 subjects).

In this experiment, Tree classifier was primarly selected for all subjects’ channels (97.14%),
just one SVM classifier was selected for the fifth optimal channel.

WOfeed subjects ACC. ACC. ACC. ACC. ACC. Mean ± STD
(Ch1) (Ch2) (Ch3) (Ch4) (Ch5)

sub 1 100.00% 100.00% 98.33% 98.33% 96.67% 98.67 ± 1.39 %
sub 2 80.33% 75.41% 75.41% 72.13% 70.49% 74.75 ± 3.77 %
sub 4 75.00% 65.00% 63.33% 58.33% 56.67% 63.67 ± 7.21 %
sub 6 96.67% 91.67% 88.33% 86.67% 86.67% 90.00 ± 4.25 %
WITHfeed subjects
sub 3 98.33% 96.67% 96.67% 95.00% 78.33% 93.00 ± 8.28 %
sub 5 95.00% 90.00% 90.00% 88.33% 88.33% 90.33 ± 2.74 %
sub 7 93.33% 76.67% 71.67% 71.67% 70.00% 76.67 ± 9.65 %

Table 6.4: (Pilot2) Training classification accuracy of the five op-
timal channels for each subject

The accuracies displayed in Table 6.4, correspond to the optimal channels selected for
majority voting during calibration (see Table 6.3). Table 6.5 show the TPR, TNR and ac-
curacy of the WOfeed and WITHfeed testing paradigms, respectively.

The mean TPR for WITHfeed’s subjects was 43.51%, less than WOfeed’s subjects, which
was 56.94%. On the contrary, in the WITHfeed session, the mean TNR increased 51.39%,
with respect to the 46.43% of the WOfeed average. Two independent T-test determined that
there was no significant effect between TPR and TNR when comparing WOfeed and WITH-
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WOfeed subjects TPR TNR ACC
sub 1 59.52% 32.14% 45.83%
sub 2 73.81% 28.57% 51.19%
sub 4 44.44% 66.67% 55.56%
sub 6 50.00% 58.33% 54.17%
WITHfeed subjects TPR TNR ACC
sub 3 25.00% 87.50% 56.25%
sub 5 58.33% 20.83% 39.58%
sub 7 47.22% 45.83% 46.53%

Table 6.5: (Pilot 2) Performance of the WOfeed and WITHfeed
groups

feed paradigms (p = 0.284 and p = 0.812, repsectively).Although these changes follow the
hypothesis that feedback improves subjects’ concentration in dorsiflexion, they were found
non significant.

The mixed ANOVA test found no significant interaction between training/testing stages
and the WOfeed/WITHfeed paradigms in the classification accuracy (p = 0.492). Therefore,
both factors can be treated as independent variables, meaning that the decrease in classifi-
cation accuracy from calibration to the online testing, affects both WOfeed and WITHfeed
similarly. This accuracy reduction was found significant for both groups (p = 0.002), and
no significant accuracy differences were found between neither calibration nor testing for
WOfeed and WITHfeed (p = 0.95).

An average 34.65% less in the percentage of accuracy was obtained when comparing
training and testing performances. The main difference between the two phases was the
presentation of control and attention trials (in different sessions during training and alter-
nated in testing). Therefore, to optimise the BCI setup to better scope feedback effects, the
training paradigm of the main experiment was modified so that it matched the online testing.

6.3 Main Experiment

An analysis of the most selected channels for majority voting was carried out during calibra-
tion (see Table 6.6). The categorical analysis concluded that the channels more influenced by
attention variations were P2 (in 6/9 subjects), CP2 (in 5/9 subjects), FC3 (in 5/9 subjects)
and Pz (in 5/9 subjects).

The corresponding classification accuracies of the five optimal channels are given in Ta-
ble 6.7 for each subject. Mean accuracy and standard deviation are also included. Tree
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Ch1 Ch2 Ch3 Ch4 Ch5
sub 1 P2 C4 CP2 P1 AF4
sub 2 C2 Pz P2 Cz AF4
sub 3 P2 C4 C3 Pz FC4
sub 4 C4 FC4 AF4 Cz CP2
sub 5 FC3 FC4 P1 CP2 Pz
sub 6 P2 CP2 FC3 C2 Pz
sub 7 AF4 C3 FC3 P1 Pz
sub 8 C2 FC3 Cz P2 CP2
sub 9 FC3 C4 Cz P2 P3

Table 6.6: Selected channels for online majority voting based on
the lowest CE during calibration.

classifier was again more used (78%) than SVM (27%).

ACC. ACC. ACC. ACC. ACC. Mean ± STD
(Ch1) (Ch2) (Ch3) (Ch4) (Ch5)

sub 1 70.00% 62.00% 60.00% 58.00% 56.00% 61.20 ± 5.40%
sub 2 78.00% 66.00% 64.00% 62.00% 58.00% 65.60 ± 7.54%
sub 3 60.00% 58.00% 54.00% 54.00% 53.33% 55.87 ± 2.96%
sub 4 80.00% 58.00% 56.00% 56.00% 54.00% 60.80 ± 10.83%
sub 5 74.00% 72.00% 70.00% 64.00% 64.00% 68.80 ± 4.60%
sub 6 64.00% 62.00% 58.00% 56.00% 56.00% 59.20 ± 3.63%
sub 7 70.00% 68.00% 58.00% 58.00% 58.00% 62.40 ± 6.07%
sub 8 84.00% 78.00% 66.00% 66.00% 64.00% 71.60 ± 8.88%
sub 9 58.00% 56.00% 54.00% 54.00% 52.00% 54.80 ± 2.28%

Table 6.7: Individual classification accuracy of the five optimal
channels of each subject

The performance of the online testing paradigm is shown in Table 6.8 in terms of Accu-
racy, TPR and TNR for each WOfeed and WITHfeed session.

To provide a frame of reference of the accuracy of the BCI system, the changes in classifica-
tion accuracy for the offline calibration, WOfeed and WITHfeed paradigms were evaluated
by a repeated measures ANOVA (see Figure 6.3). Results showed significant differences
between the paradigms (p = 0.028), so Bonferroni pairwise comparison was applied to iden-
tify the specific significant effects. The general decrease in accuracy from calibration to the
WOfeed was determined to be significant (p = 0.028). In contrast no significant changes
were observed between calibration and WITHfeed paradigm (p = 0.209). In addition, the
comparison between the online paradigms showed no significant difference (p = 0.337). This
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Figure 6.3: Comparison of the accuracy among all paradigms.
The dark blue bar represents the mean accuracy among the five
optimal classifiers, selected for majority voting during calibration.
The bars in light blue and yellow depicts the WOfeed andWITHfeed
accuracies, respectively.

implies that for analysing the results of the WITHfeed session, the classification accuracy of
the calibration can be used as a reference.

When evaluating the effect of feedback, the TPR comparison between WOfeed and WITH-
feed showed no clear pattern (see Figure 6.4). This difference between WITHfeed-WOfeed,
revealed no effect in three subjects, increase in four, and just two with decreasing TPR as
hypothesised. The non significant difference of the TPR was confirmed by the repeated
measures ANOVA (p = 0.708). On the other hand, TNR increased for 6/9 subjects during
the WITHfeed session. However, the repeated measures ANOVA for the TNR, determined
that this change in control trials detection between WOfeed and WITHfeed paradigms was
not significant (F (1, 8) = 1.593, p = 0.242).

The combination of TNR and ACC results, show that the implemented visual feedback
does have an effect on subjects’ attention. It increases their concentration on dorsiflexion
(higher TNR) and improves their understanding of the experiment (higher accuracy with
respect to the WOfeed session).

Combining all online performance metrics, results show that for most subjects, feedback
did not increase their concentration during auditory oddballs, as no significant decrease in
the TPR was observed. On the contrary, feedback was more likely to increase TPR, TNR or
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both, suggesting higher separability between attention and control trials, which was trans-
lated into significantly higher accuracy with respect to WOfeed.

TPR TPR TNR TNR
(WO) (WITH) (WO) (WITH)

sub 1 28.00% 28.00% 80.00% 56.00%
sub 2 36.00% 60.00% 44.00% 60.00%
sub 3 64.00% 52.00% 56.00% 64.00%
sub 4 56.00% 72.00% 28.00% 48.00%
sub 5 88.00% 40.00% 28.00% 84.00%
sub 6 24.00% 24.00% 84.00% 80.00%
sub 7 52.00% 52.00% 72.00% 84.00%
sub 8 44.00% 56.00% 64.00% 72.00%
sub 9 52.00% 88.00% 20.00% 12.00%

Table 6.8: Performance of the online testing paradigm for each
subject and group (WOfeed/WITHfeed)

Figure 6.4: Differences in the percentages of TPR (dark blue) and
TNR (light blue) between WITHfeed and WOfeed for every subject.
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Discussion

7.1 Discussion
The main objective for this study was to evaluate the effect of feedback in an adaptive BCI
configuration with attention variations. Studies [44, 42] have shown that attention alter-
nation has a significant effect on the preparation and execution of the movement, reflected
in changes in the temporal features of the MRCP. This has an important implication in
designing real-time BCI systems, pointing out the need to adjust these systems to the acute
environment. Our hypothesis was that real time feedback would enhance participants’ focus,
and thus the rehabilitation effect of the BCI system would improve, as the increased level of
attention means greater neuroplasticity [46].

7.1.1 Channel Location

The areas most affected by attention diversion in this study, correspond to fronto-central
lobe (FC3 and FC4), parieto-central lobe (CP2) and parietal lobe (P2 and Pz). These
findings, partially agree with Aliakbaryhosseinabady et al. [47], who found the highest
classification accuracy between focused and dual task attention diversion, in the central and
fronto-central lobes. The good performance of parietal channels might be reconduced to
physiological reasons. In fact, subjects were instructed to be careful to the visual cue and
to the feedback. This continuous visual focus may have activated the parietal cortex more
than speculated before the experiment. The parietal cortex, as explained in chapter 1.2, is
responsible for spatial orientation and sense integration. This would explain its particularly
marked activation and its involvement in attention diversion.

7.1.2 Processing

In order to optimise the setup, an optimisation of the feature set was carried out. Results
showed significantly higher performance of the spectral features with respect to the tem-
poral ones. In addition, no statistically significant increase in accuracy was observed when
extracting both temporal and spectral features. The high variability of this last feature set,
suggest that the spectral signal content is indeed the most informative. Similar results were
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obtained in [47], where time-frequency features (event-related spectral perturbation repre-
senting the power of the wavelet coefficients in each window), revealed superior accuracies
than MRCP-based temporal features.

However, despite feature optimisation, the obtained mean accuracy during the online testing
without feedback (51.11 ± 9.39%) was considerably lower than in [47], ranging from 60-70%
depending on the area and extracted feature set, using Linear Discriminant Analysis. The
classifier analysis carried out during the first pilot showed that Decision Trees and SVM
retrieved the highest accuracies when detecting control and attention trials. Antelis et al
[48], also applied SVM - which using time-frequency features to represent two attention
states while performing a motor task - yielded to 76.37% average classification accuracy. A
more in depth analysis of the optimal classifiers for detecting different attention states was
carried out by Fathy and Eldawlatly [49]. They evaluated Linear Discriminant Analysis,
Naive Bayes Classifier and SVM with spectral features of single-channel data, resulting in
67.8 ± 5.6%, 67.2 ± 4.9%, 65.2ś ± 3.1% average accuracy, respectively.

However, due to the novelty of the project, few studies have been found for comparison.
The main line of investigation found regarding BCI and MRCP is focused on movement
prediction [50, 51, 52, 53], rather than their relationship with attention.

During the second pilot study a significant decrease in accuracy was noticed in the on-
line trials compared to calibration. Furthermore, after analysing the data from the second
study, not clear patterns could be observed from TPR and TNR variations. This means that
the differences between groups were not as evident as we had hypothesised. In addition,
within group variations showed rather unique subject responses. For the aforementioned
reasons, the study was changed from a parallel study to a crossover study.Subject specificity
is of particular interest in this study since it might relate to how neuroplasticity is induced
in different patients. This unique response between stimulus and plasticity could suggest
that, despite the common pathology, it is important to tailor BCI used in clinical setting
with parameters that fit each individual patient.

7.1.3 Feedback analysis

Following this subject-specific processing, the main experiment showed that feedback in-
creases general attention, which is related to the TPR and the TNR. TPR doesn’t have
a clear behaviour since it had no effect in three subjects while it increased in four other
subjects and finally it decreased in two other subjects. This contradicts the prior hypothesis
that expected an increase the false negative rate (attention trials classified as control), which
would therefore decrease the TPR. On the other hand, TNR increased in six out of nine
subjects, meaning that the precision in identifying classes and separating control from atten-
tion, increases. Thus when a control trial is shown to the classifier the classification is done
correctly. Overall, the feedback increased the attention but it cannot be clearly established
whether this has a direct effect on attention to perform the main task. In fact, an increase in
TPR and TNR means that the feature spaces are more separated and thus the subjects are
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more focused during control trials but not during attention trials. This may indicate that
subjects are better in shifting attention between tasks.

In clinical settings attention can be diverted easily and thus our aim was to simulate these
attention conditions in our BCI system in the laboratory. However, in order to recreate the
effect of the clinical environment, the study was limited to divert subjects’ attention using
dual tasking (dorsiflexion and oddball sequence counting), instead of a complete unfocused
state.

7.1.4 Subjects’ fatigue during the experiment

Attention was split into two tasks concurrently and even though dorsiflexion was easy to
perform the auditory one was complex according also to the subjects. Despite the simplic-
ity of the movement, users complained mental fatigue and sleepiness, throughout the three
sessions of fifty dorsiflexion repetitions.

We speculate that sleepiness came from the simplicity of the movement and its repetition
across the three sessions. We suppose that mental fatigue was due to the auditory oddball
task given aside the main task.

The system’s hardware comprehended a LCD screen which was not provided with anti-
reflective layer and thus, darkness was needed for the use to see the visual queue appropri-
ately. Artificial light was off in order to avoid unwanted interference with the EEG signal.
Lack of light in the room is also believed to be a factor that contributed to sleepiness.

To enhance focus and reduce the aforementioned negative effects, users were provided with
coffee, if desired.

Although not measured, for some subjects, fatigue had an effect on the attention paid during
the experiment.

7.1.5 Future work and improvements

In regards to subject fatigue, lowering the number of repetitions in each session, from fifty
to 30 for instance, might be beneficial in avoiding subject sleepiness and thus, increasing
attention during the whole duration of the experiment.

Although the results obtained during this study only suggest a general, rather than task-
specific, increase in subjects’ attention. Their validation is restricted to the low number of
participants. Encouraging healthy subjects to participate was an issue during the develop-
ment of the project. Therefore, the improvements in the experimental set up mentioned
before, to save time and reduce subjects’ fatigue, are thought to facilitate participants’ re-
cruitment, and thus, improve the validation of the results.
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Finally, in accordance to the subject-specific processing, future implementations of online
feedback should consider time-frequency features, where both frequency bands and timing
are selected based on the greater differences in the attention states.
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