
mcode.sty Circadian Rhythm - A Genetic
Oscillator

Alari Varmann

Scientific Bridging Course

Supervisor: Siyang Wang

UPPSALA UNIVERSITY
Department of Information Technology

2015

Circadian Rhythm Model Setup Explanation, General
Conceptual Ideas

The idea of this Scientific Computing Bridging course homework simulation project is to
model the changes in the counts of activator and repressor transcription factor proteins
that modulate the gene expression directly by inducing a chromatin shape change by
affecting the promoter area of a complementary DNA strand. The protein count
dynamics, what is the topic in this miniproject, is explained in [1].
The basic idea is the feedback inhibition [2] concept in which the enzymes switch off the
synthesis pathway once there is plenty of end product molecules available.

Quote from source [3]: ”The research article that is the basis for this mini project was
one of their articles in systems biology to point out that the deterministic reaction rate
equations did not give a sufficiently accurate description of biochemical systems.”

Let us explain the last quote.
In comparison to the circadian rhythm deterministic model developed in the last
miniproject, this time we implement the stochastic model of the circadian clock
biochemical reaction network. Since the cell is very small, with a volume about the
magnitude in liters as the diameter of the proton in meters, there may be very few
proteins, only 1 to 10. Since the small number of consituent molecules, the deterministic
model based on concentrations could be very inaccurate.

This is the motivation for implementing the stochastic algorithm – called
Gillespie’s algorithm.

(a) Circadian Rhythm - Genetic Oscillator ODE
System. Source ([1])

(b) Biochemical Network of Circadian Rhythm
Oscillator Model. Source ([1])

Figure 1: The Circadian ODE System and Biochemical Reactions

Stochastic algorithm implementation

Figure 2: Gillespie’s Algorithm. Source: ([4]).

The main tool for the implementation is the mentioned Gillespie’s algorithm. In
this algorithm, we make repeated use of simulation a random uniformly distributed
variable to find a inter reaction time τ which is distributed exponentially. We use this
time to find the reaction r that occurs by requiring:

r−1∑

k=1

ωk(x) < a(x)u2 ≤
r∑

k=1

ωk(x)⇔ F (r − 1) < u2 ≤ F (r), (1)

since the cumulative distribution function is the sum of all propensity functions up to
that reaction (the cumulative distribution is constant in between the discrete numbers

– reaction numbers). u2 is the uniformly distributed random number, a =
∑R

r=1 ωr(x)
and ωk are the propensity functions, which determine the probability of reaction
happening by

p(Y = r|X = x) = ωr(x)/a(x) (2)

When we’ve found out the next occurring reaction, we’ll update the state vector of 9
different simulated molecules through

x
ωr−→ x+ nr (3)

(where n are stored in a stoichiometry matrix given by the MATLAB file nr_vilar()).
Every row of the stoichiometry matrix is a 9-element vector of molecule number changes
– basically a creation-annihilation vector and by calling nr at each iteration, we get our
updated state depending on the reaction type r by equation (3). Then we’ll update the
time by t = t+ τ to get the next time. Only 1 reaction can occur at a time – that is the
state space model. The propensities are proportional to the molecule counts – the more
molecules, the more probable it is for the reaction to occur – this is consistent with logic
as well.

The mathematical background for the stochastic algorithm is given by continuous
time discrete space Markov chain model. In the latter, one has a finite state space
– in this case the 9-dimensional vector of molecule counts, and τ is distributed
exponentially. I presume that Markov chain is originally discrete, but this model is a
continuous-time version of it – the output of our model is a sequence of molecule count
states in the state space.
We can reduce the dimensionality of the computations by storing the molecule counts
only every hour, this way we would need to compute 399× 9 new molecule counts,
which is less than 3600.

Analysis

If we have propensity functions and stoichiometry vectors for all reactions, the chemical
system is completely determined. So even if the model is stochastic, we can study it
with deterministic methods, in this case one could use the chemical master equation,
solve it using for example finite difference methods to obtain the probability densities
and through them, the expected values of the molecule counts. We could suppose that if
we have a vector – (molecule type, molecule count) as a variable – each of those
combinations would be a different state in the state space. The problem is the number
of molecules – if each of the molecules can have a values and there are b molecules, then
the number of unknown of the deterministic linear equation system would be ab. The

unknown state would If a = 10 = b, then it would be 1010, but if we have say 20
molecules, then 1020 is a huge number. In these cases, we would use Monte carlo
simulations, for example one could implement Markov process using
stochastic simulation algorithm, that was solved by Gillespie. Then one can make
use of inverse transform (sampling)– for generating sample numbers at random from
any probability distribution given its cumulative distribution function and a random
number for example from the uniform distribution like in our case.

Figure 3: The reactions in the stochastic circadian rhythm network. Source ([4]).

(a) Stochastic model of circadian rhythm for
δr = 0.2

(b) Deterministic model from differential equa-
tions for δr = 0.2

Figure 4: Comparison of deterministic and stochastic models. We see that for δr = 0.2,
both the stochastic and deterministic clocks show cyclic period oscillations, with period
T = 24 approximately hours. We see that if the propensity for the annihilation of repressor
protein is high then then the decrease in R is very sharp

(a) Stochastic model of circadian rhythm for
δr = 0.08

(b) Deterministic model from differential equa-
tions for δr = 0.08

Figure 5: We see a major difference in the behaviour of the stochastic and deterministic
clocks. That demonstrates the stochastic nature of our simulations

(a) Stochastic model of circadian rhythm for
δr = 0.01

(b) Deterministic model from differential equa-
tions for δr = 0.01

Figure 6: Again we see that the stochastic clock doesn’t switch itself off in contrast to
the deterministic clock, which is insensitive to noise since the fixed point at extremal δr
values becomes stable, the oscillation period seems to have extended to about 350 hours..
I am sure the cells would be dead by that time already, but at some low value of δr, R
count should not decay anymore. The question is — why doesn’t my R rate decrease
slower with really small δr ? I think that depends on the randomness of my simulations

Figure 7: We see that if δr is very small, then the repressor protein is annihilated very
slowly, thus and since there is a lot of repression transcription factor. Thus, not enough
proteins are produced and the cycle is downregulated so that the circadian rhythm is not
established – and thus, the cell could not produce day-night type of oscillations .

Since any organism is made out of cells and if the cells are not able to produce stable
day-night oscillations, then the organism would not sustain any form of life, since I
think it would not be able to regenerate itself.
Simple comparison: Yesterday I was really tired and it felt so hard to do useful work
and my efficiency was certainly small. Today, after having properly rested, I feel much
better and can do useful work much more efficiently. This is just the generalization from
the cellular level.

Conclusion analysis

Analysis of Oscillations

It is interesting to note, that mRNA molecule count does not directly enter the
dynamics (if the protein count remains constant).
In the deterministic case, the oscillations are always regular, but in the
stochastic case the additional parameters may alter the oscillation cycle

(δr in our case).
In the stochastic case, the fixed point may not become stable [1] for
extermal values of δr . So this means that the stochastic network may still continue
oscillating, although the propensity for the degradation of R protein could be really
small, and it looks like its quantity shouldn’t change a lot. That’s exactly what
happened in my simulations – the oscillations still continued down to a very small value
of δr < 0.01.

Figure 8: The simulation for δr = 0.05 as done in the article ([1]). I get approximately the
same chart, but still different on each run. Whereas in the case of ([4]) the oscillations
ceased at δr = 0.08, in ([1]) and in my case they are produced nevertheless. Account
to the realistic situation: If the period of next activator/repressor transcription factor
production is very high, the cells would not be able to implement that efficiently since
the day on Earth lasts 23 hours and 56 minutes – and probably die in the long run
nevertheless because of the increase of entropy of communication in the system .

Analysis of Stochastic vs Deterministic Algorithm Usage
Feasibility

If a deterministic model for a problem is available and feasible (especially in low
dimensions), one should use this instead of the stochastic model.
When the number of molecules is high, the stochastic algorithm is comparatively a lot
faster than the deterministic algorithm. If I understand the situation correctly, then in
our algorithm we ”discretize” the time variable for faster execution time purposes, like
in this particular case, then in the case of n timesteps, a molecules and b values for
each, the dimension of the system would be O(a× b× n) – and the fact that we have
Markov chain, would reduce the system dimension even more for our algorithm since the
next step depends only on the last step, so this should even limit the dimension more.
The only difference is that since we don’t actually discretize the time variable, but only
store discrete points of time, the actual dimension of the system is a lot higher – and
the higher the dimension of the system, the more feasible it would be to use Monte
Carlo methods to solve it. So we basically get an efficient algorithm for a very high
dimensional system, by using Monte Carlo and then artificially even lower the
dimension a little bit to get faster execution time 1

Final Conclusive Remarks and Explanation of the Use of
Stochasticity for Adaptivity and Intelligence

In general I would say that the results from the stochastic simulations are more
unpredictable (another way – versatile for the organism). For example, in ([4], the
circadian clock switches itself off for δr = 0.08, but in ([1]) , the circadian clock for
δr = 0.05 produces oscillations nevertheless. In my case, I had oscillations even when
δr = 0.01. I think this exemplifies the stochastic nature of our algorithm well. I think
what could be said is that the stochastic simulation algorithm is an efficient way to
tackle a problem in high dimensional state space, but the algorithm should be run many
times to get a picture of what is going on – this way, we could explore the adaptivity
phenomenon.

Usage of stochasticity in cellular biochemical networks: The biochemical
networks of organisms may actually take advantage of the cellular noise ([1]) to increase
the amount of possible future actions 2(states) and maintain adaptivity for changing
environmental conditions.

1the dimension actually remains the same, but since we don’t store all the information at every step,
we can say that the dimension is ”lower”

2this is one way to define intelligence

References

[1] Vilar, J.M.G. , Kueh, H.Y. , N. Barkai, Leibler, S. Mechanisms of noise-resistance in
genetic oscillators

[2] Gene Expression [WWW]
http://highered.mheducation.com/olcweb/cgi/pluginpop.cgi?it=swf::535::

535::/sites/dl/free/0072437316/120070/bio10.swf::

Feedback%20Inhibition%20of%20Biochemical%20Pathways

[3] Mini Project 3 handout: ”Circadian Rhythms and Stochastic Models”

[4] Hellander, A. Stochastic Simulation and Monte Carlo Methods

Appendix : MATLAB Code for the Solutions

1 clear all; clc; close all;
2 %% CREATION OF THE PARAMETER VECTOR
3 alpha a = 50;
4 alpha pr a = 500;
5 alpha r = 0.01;
6 alpha pr r = 50 ;
7 beta a = 50;
8 beta r = 5;
9 Δ m a = 10;

10 Δ m r = 0.5;
11 Δ a = 1;
12

13 Δ r= 0.05; % = 0.2 = 0.01 % change this parameter for stochastic
14

15

16

17 gamma a = 1;
18 gamma r = 1;
19 gamma c = 2;
20 theta a = 50;
21 theta r = 100;
22

23 p = [alpha a alpha pr a alpha r alpha pr r beta a beta r theta a
theta r gamma a gamma r gamma c Δ m r Δ m a Δ a Δ r];

24

25

26 %% CREATION of input vector
27 A = 0;
28 C =0;
29 D A = 1; % only activator and repressor gene different from 0
30 D Apr = 0;
31 D R = 1;
32 D Rpr =0;
33 M A =0;
34 M R = 0;

35 R =0;
36

37 x=1:9;
38 count(x) = [A C D A D Apr D R D Rpr M A M R R]; %initial state ---

DISCRETE NUMBER OF MOLECULES!
39

40

41 t = 0;
42 T = 400;
43 nr = nr vilar();
44 statemat = zeros(400,9); timecol = zeros(400,1); counter = 0;
45 running index = 1;
46 %%
47 while t < T
48 w = prop vilar(count(x), p); % creates the 18-dim propensity vector

omega dependent of molecule count nr(x)
49 u1 = rand; u2 = rand; % create 2 uniformly distributed random

numbers
50

51 a = sum(w); % now this is like the CDF / unit time (cumulative
distribution function per unit time)

52 tau = -log(u1)/a; % find exponentially distributed tau such that it
gives a -- the uniform propensitysum

53

54 % tau is the inter event time -- time until the next reaction occurs
55 % find which reaction occurs
56

57 r = next reaction(w,u2);
58

59 count(x) = count(x) + nr(r,:); % r'th reaction transformation,
change molecule vector state

60

61 t integer = 0:1:400;
62 check = ones(1,400);
63 if (t > t integer(running index)) && (check(running index))
64 statemat(running index,:) = count(x);
65 timecol(running index) = t;
66 check(running index) = 0;
67 running index = running index + 1;
68 end
69 % update the state
70 t = t+tau;
71 counter = counter +1;
72 count(x)
73 %plot(timecol,statemat(:,1), timecol, statemat(:,9)); drawnow;
74

75 end
76 figure();
77 plot(timecol,statemat(:,9), timecol, statemat(:,1));
78 legend('repressor protein count', 'activator protein count');
79 title(['Δ ', num2str(Δ r)]);

1 function r = next reaction(w,u2)
2 k = cumsum(w(1:end));
3 % cumk = k(1:end-1); cuml = k(2:end);
4 a = sum(w); % cumulative distribution function coefficient
5

6 rvec = find(a*u2 ≤ k);
7

8 r = rvec(1); % finds the first index for which it is true, then it is
automatically bigger than the last sum

9 end

