
Machine Learning Lab1

Alari Varmann and Octave Mariotti

February 2016

Introduction

All Training MSE graphs are on linear scale

Training Feedforward Neural Network Using Gradient
Descent

The network is created using the following code:

net = newff(p, t, [2], {’tansig’ ’logsig’}, ’traingd’, ...

’’, ’mse’, {}, {}, ’’)

We see that in the hidden node, the activation function is the hyperbolic tangent and the
in the output layer, it is the logistic sigmoid.

Question 1: As you have seen, the error (performance) sometimes
converges to a value greater than zero. Explain why this happens.

It is known that the gradient descent uses only order 1 derivative information from the
Taylor expansion, so it doesn’t give the fastest convergence. Every time before training,
the network weights are randomised. Depending on the initial weights and error tolerance
(training stopping criterion – low gradient value, RMSE or number of iterations), the
network can get stuck in different local minima, which don’t necessarily coincide with the
global minimum. Since the stopping criterion is satisfied, the training will stop and the
error won’t be decreased any further. That’s it.

Question 2: How does the learning rate affect the training of the
network? What are the effects of using a too low value? What are
the effects of using a too high value?

Very low learning rate makes the learning possibly very slow, since the weight changes are
relatively small. Higher learning rates cause the network to consecutively jump back and
forth /zigzag over the minimum. Some heuristic should be utilized (line search, different
strategies) to make the network adapt to the change in the gradient magnitude.

1

Backprop training MSE, learning rate 0.1 Backprop training MSE, learning rate 2

Backprop training MSE, learning rate 20

First solution

Plot 2: XOR-network results

Question 3: Why are the activations of the hidden nodes in the
range [−1, 1], but the output of the network in the range [0, 1]?

The activations of the hidden nodes are given by the hyperbolic tangent function

tanh(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

→ exp(x)− exp(−x)

exp(x) + exp(−x)

with range [−1, 1], and visualized on R2 it looks basically like a logistic sigmoid ex-

2

Second solution

tended to the lower half plane. The logistic sigmoid on the other hand is a more suitable
function in a statistical sense since it can be seen as a density function of the weighted
sum of hidden node activations, its range is [0, 1].

Generative vs Discriminative Models.

As we know: ”Discriminative models, as opposed to generative models, do not allow one
to generate samples from the joint distribution of x and y. However, for tasks such as
classification and regression (that do not require the joint distribution), discriminative
models can yield superior performance. On the other hand, generative models are
typically more flexible than discriminative models in expressing dependencies in complex
learning tasks. In addition, most discriminative models are inherently supervised and
cannot easily be extended to unsupervised learning.” [2]

Logistic Regression

Logistic regression is one type of a discriminative probabilistic model, more specifically a
type of generalized linear (in this case linear of hidden layer activation transformation)
regression used for predicting binary or categorical outputs (also known as maximum
entropy classifiers).

Consider the case of binary classification in which one has a single target variable t
such that t = 1 denotes class C1 and t = 0 denotes class C2. The activation y = σ(a).
We can interpret y(x,w) as p(C1|x) with p(C2|x) given by 1− y(x,w). The conditional
distribution of targets given inputs is a Bernoulli distribution:

p(t|x,w) = y(x,w)t(1− y)(x,w)1−t.

.

3

Logistic Regression General Idea

Limit to only one hidden layer here (no deep network). In general, logistic regression
is a technique used for generalized classification problems – the output result can
be regarded as a vector of posterior probabilities of sigmoidal class activations for each
class (in the general case given by the softmax activation function) given a nonlinear
input data dependent transformation(s) φ, which correspond to the activations of the
hidden layer. If we had K separate binary classifications to perform, use K-fold binary
classification with Bernoulli targets tk ∈ {0, 1}. Then a network having K output nodes
is used (k = 1, . . . ,K), each of which has a logistic sigmoid activation function. The k’th
output node activation would be:

yk(x,w) = σ
(K∑
j=0

w
(2)
kj φ

[M∑
i=0

w
(1)
ji xi

])
.

Our example – XOR Implementation

The logistic sigmoid specifies the activation distribution for each class. Given train-
ing data m = 1, . . . ,M = 4, {φ(xm),T} = {tanh(xm), t},T = (0, 1, 1, 0)T , we need
to find the weight vectors w(1),w(2) of the hidden and output layer that maximize the
likelihood function l of getting the target output XOR T = t. The Bernoulli targets
for XOR tm ∈ {0, 1} and denote w = (w(1),w(2)), where 1 corresponds to the hid-
den layer and 2 the output layer. Assume that the class labels are independent, given
the input vector, then the posterior distribution of the target vector component tn is:
p(tn|xn,w) = yn(xn,w)tn{1 − yn(xn,w)}1−tn . In our case we have only one output
node, m = 1, . . . ,M = 4 and since

p(tm|w,xm) = σ
(
w(2)Tφ(

2∑
i=0

w
(1)
ji xmi)

)tm(
1− σ(w(2)Tφ(

2∑
i=0

w
(1)
ji xmi))

)1−tm
,

thus the likelihood of getting XOR is :

l = p(t = (0, 1, 1, 0)T |x,w) =

4∏
m=1

p(tm|w,xm)

The hidden layer performs nonlinear feature extraction, and sharing of features be-
tween different outputs can save on computation and lead to improved generalization.

We have 2 classes, although the decision boundary for XOR is disconnected. Knowing
the boolean solution for the XOR problem, we would then look for the two hyperplanes
defined by the weights for the hidden and output layer – that would linearly separate the
outputs into the 2 classes. Since we seek to implement XOR and we know that the decision
surface, which corresponds to constant input to the output layer, is a linear function of
hidden layer activation functions, we will have two corresponding hyperplanes.

Because we have a discriminative model, we don’t model the inputs, so instead the
cross-entropy error function –the negative logarithm likelihood function is:

E(w) = − ln(l) = −
M∑
m=1

{tm ln ym + (1− tm) ln(1− ym)}

4

and taking gradient w.r.t. w yields: ∇E(w) =
∑M
m=1(ym− tm)φm, which is basically the

sum-of-squares error function for a linear regression model. In Backprop and Rprop,
these gradients are computed via (recursive) use of the chain rule, combined with reuse of
information that is needed for more than one gradient.That is the basis for the generalized
delta rule ∆wji = ηδjxi as well (that uses squared loss function as well).

Here a 2-layer neural network logistic tanh and sigmoid activation function is trained
to find the weight vectors. Since y depends on w non-linearly, there is no closed form
solution – thus the neural networks to find those weight vectors. The algo-
rithms used are gradient-based optimization algorithms backpropagation (backprop) and
resilient backpropagation (Rprop). Rprop converges much faster than the backprop in
our problems.

Question 4: Question 4: Why does the training not always end up
with the same solution, even when the same training parameters
are used?

Note that actually the training could end up exactly with the same solution, unless
we initialize the network. The randomness comes into our neural network through
the random initialization of the weights, which is done before training. First we tried
training without prior initialization, and we got exactly the same results. Given that all
the parameters maintain constant, gradient descent is a deterministic algorithm, there is
no chance in there.

Question 5: Write down the boolean functions H1 ,H2 and O for
each of the two different solutions identified above with plot XOR.
Use only the logical connectives and, or and not.

We see that the first network actually implements :

O = H1 ∧H2, with

{
H1 = I1 ∧ I2
H2 = I1 ∨ I2

And the second :

O = H1 ∨H2, with

{
H1 = I1 ∧ I2
H2 = I1 ∧ I2

Question 6: Verify (e.g., with a truth table) that the functions
actually implement xor when combined

The truth Table for the first solution is :

I1 0 0 1 1
I2 0 1 0 1

H1 = I1 ∧ I2 0 0 0 1

H2 = I1 ∨ I2 0 1 1 1

O = H1 ∧H2 0 1 1 0

And for the second :

5

I1 0 0 1 1
I2 0 1 0 1

H1 = I1 ∧ I2 0 1 0 0

H2 = I1 ∧ I2 0 0 1 0
O = H1 ∨H2 0 1 1 0

Resilient backpropagation

We used the same learning rates for comparison. The parameters we used were:

epochs = 150, delta0 = 2, deltamax = 8, delta_inc = 2, delta_dec = 0.5

The training error outcomes were the following:

Rprop training MSE, learning rate 0.1 Rprop training MSE, learning rate 2

Rprop training MSE, learning rate 20

We decided to choose the one with learning rate 2.

6

Plot 3:Learning rate 2.

Task 2: Function Approximation

Question 13: Differences between backpropagation and resilient
backpropagation

Plot 3

Parameters used

Epochs 5000
η 0.01

∆0 1
∆max 10
∆inc 0.8
∆dec 1.2

Question 8

The training error is minimum with 20 hidden nodes. It seems that it is easier to achieve
a low training error with a high number of hidden nodes

7

(a) Three Hidden nodes - backprop (b) Three Hidden nodes - resilient backprop

(a) Six Hidden nodes - backprop (b) Six Hidden nodes - resilient backprop

(a) Ten Hidden nodes - backprop (b) Ten Hidden nodes - resilient backprop

Question 9

The best approximation of the function f : x 7→ sin(x) · sin(5x) seems to be achieved
with six hidden nodes : the implemented function ”looks” the closest to f . Here, the
MSE does not seem to be relevant, as it is a discrete measure of error, and we want

8

(a) Twenty Hidden nodes - backprop (b) Twenty Hidden nodes - resilient backprop

to approximate a continuous set. We should actually look at something like a function
distance, for instance : maxx∈[0,π] |f(x) − g(x)| where g is the function implemented by
the network. this of course is hard to calculate, hence the importance here of a validation
set.

Question 10

If we have too few hidden nodes — three, for instance — the network will not be able
to approximate the function at all. This is because the number of hidden nodes can be
directly seen as the number of monotonic part of the implemented function. In this case,
the function is too much restricted to achieve a decent approximation of f .

Question 11

On the contrary, if we have too many hidden nodes, the network is not bounded enough.
This result in overtraining : the network tries to approach the discrete set of points it
is given, trying to minimize error as much as possible to the detriment of the rest of the
function domain.

Question 12

As stated before, the number of hidden nodes is the number of monotonic parts in the
function implemented by the network. In this case, we can see that the slope of the target
function changes sign five times, giving six monotonous sections. It would then be sound
to think that a number close to six gives the best results. This is exactly what happens
here, as the network having six hidden nodes displays the best results.

Question 13

The functions obtained with regular backpropagation seem somewhat smoother than
those obtained with Rprop. This is not necessarily a good thing, in particular when
having too few hidden nodes (cf three hidden nodes network), but with a correct size of
the network, the result looks closer.

9

Of course, this is only regarding this problem. It is likely that Rprop approximates some
other function better than backpropagation.

Task 3 – Wine Data Classification

Question 14: What settings did you use to get good results? What
was the smallest number of hidden nodes that you needed? Ap-
proximately how many percent of the wines are placed in the right
class after training this network?

net4 = newff(p, t, [5], {’tansig’ ’logsig’}, ’trainrp’, ...

’’, ’mse’, {}, {}, ’’)

net4 =init(net4);

net4.trainParam.epochs = 1000

net4.trainParam.delta0 = 0

net4.trainParam.deltamax = 7

net4.trainParam.delta_inc = 1

net4.trainParam.delta_dec = 0.3

net.trainParam.min_grad = 0

Best achieved Confusion Matrix.

10

Approximately 45.5 per cent of the wines were misclassified by this trained Rprop
neural network. The network can also achieve over 30 per cent performance with only 1
hidden node, but we obtained a better result with 5 hidden nodes.

In general we realize that to get better than random chance (p=1/3) results with unnormalized input data, one has to be persistent and keep on trying, which may take quite some time.

Question 15: Did the normalization have any significant impact
on the results of the training? How many hidden nodes did you
need now in order to get good results?

Minimum Gradient min_grad: 1e-05

Maximum Validation Checks max_fail: 6

Initial Delta delta0: 0.07

Delta Increase delt_inc: 1.2

Delta Decrease delt_dec: 0.5

Maximum Delta deltamax: 50

Best result – 99.4 per cent with 5 hidden nodes.

Only 0.6 per cent of the wines were misclassified by this trained Rprop neural network.
We tried out a few other combinations of parameters as well that yielded
worse than chance (p = 1/3) results. This is actually very interesting and indicates

11

that normalization may help to achieve a lot better training results – but above 99 per
cent is probably very much overfitting. Note that in real life, we don’t care so much
about the training error as compared to the generalization error, which is unknown since
we don’t have infinite amount of data.

Question 16: In general, will normalization always help in training
an MLP? What possible dangers can normalization in this way
pose to a supervised learning problem?

No, it might not necessarily always help, but it doesn’t complicate training either (”rarely
hurts”). If there are a lot of classes, it will be difficult to achieve a high classification
accuracy probably in both cases, since the likelihood function is a product of individual
posterior probabilities for each class.It is obvious that if there are a lot of classes it will
be harder to find the weights that achieve a lot better than chance classification accuracy
(low F1-score).

In general, for example for the k-Means algorithm or radial basis function network,
where distance measures are used, data normalization is essential since otherwise the fea-
ture with high magnitude will dominate in the calculate the metric similarity.

In general,we thought that centering or normalizing it will help to make the data more
uniform to a fixed learning rate since the update in weight is implemented through

∆wji = ηδjxi generalized delta rule,

meaning that the change in weight is proportional to the input – so smaller inputs would
always have a smaller influence on the training outcome. This would just mean that the
training could be slower due to very different changes in weights?
[1] ”If the input variables are combined linearly, as in an MLP, then

it is rarely strictly necessary to standardize the inputs}, at least in theory.

Changing the corresponding weights and biases, leaving one with the exact same outputs
as before. However, there are a variety of practical reasons why standardizing the inputs
can make training faster and reduce the chances of getting stuck in local optima.

Standardizing inputs removes the problem of scale dependence of the initial
weights. Explanation: Assume we have an MLP with one hidden layer applied to a
classification problem and are therefore interested in the hyperplanes defined by each
hidden unit. Each hyperplane is the locus of points where the net-input to the hidden unit
is zero and is thus the classification boundary generated by that hidden unit considered
in isolation. The connection weights from the inputs to a hidden unit determine the
orientation of the hyperplane. The bias determines the distance of the hyperplane from
the origin. If the bias terms are all small random numbers, then all the hyperplanes will
pass close to the origin. Hence, if the data are not centered at the origin, the hyperplane
may fail to pass through the data cloud. If all the inputs have a small coefficient of
variation, it is quite possible that all the initial hyperplanes will miss the data entirely.
With such a poor initialization, local minima are very likely to occur. It is therefore
important to center the inputs to get good random initializations. In particular, scaling

12

the inputs to [−1, 1] will work better than [0, 1], although any scaling that sets to zero the
mean or median or other measure of central tendency is likely to be as good, and robust
estimators of location and scale (Iglewicz, 1983) will be even better for input variables
with extreme outliers. ”

Moreover, on a much broader level, any kind of transformation on the input data may
yield loss of information. If for instance our initial distribution contains value distributed
over a large interval, it may be nice to use a logarithmic scale. However, in doing so, the
larger values will be gathered in a domain much narrower than before, and the smaller
will get scattered. Even linear transformation may cause harm due to rounding errors.

Task4 – Approximating House Prices

Plot 5 :Performance plot of Housing.

Question 17: The error of the trained network usually differs for
the three sets. Explain why it differs, and what it means for the
performance of the network in general

The training error will differ because of two arguments:

• The training data is selected randomly at every training, so the performance graph
couldn’t possibly be identical if the training data itself is different

• Starting weights initialized randomly

13

In general, we cannot say anything about the generalization capacity of the network just
by the magnitude of the training error. The smaller the training error, possibly the more
the network can be prone to overfitting, meaning that the network can become sensitive
to the noise in the sample.

Question 18: As the training goes along, the three error curves
usually behave differently. Describe these trends, and explain why
the curves behave in such a way.

Expected prediction error The expected prediction error I(fN) of a particular function
over all possible values of x and y is

I(fN) =

∫
X×Y

L(f(x), y)ρ(x, y)dxdy,

where ρ(x, y) is the joint distribution of the data, which we don’t know — the data is
modelled using this in probabilistic generative models. Instead of the expected prediction
error, we have the empirical error, which we can compute from our sample

IS(fN) =
1

N

N∑
i=1

L(fN (xi), yi)

Generalization error is the difference between the expected and empirical error. The
algorithm is said to generalize if limN→∞ I(fN)− IS(fN) = 0.
The training error decreases in general as a function of epochs because that is the basis for
how the gradient-based optimisation algorithms are built. We use the validation/test set
to approximate the generalization error of the network, though the test set will be left for
the final evaluation. The validation and test set errors usually decrease in the first part
of the training, after which they will usually start to increase – that is where the network
will start to fine-tune itself to the training data set. We should use the validation data
set to determine the training time – i.e. when to stop training. If we really are interested
in the generalization capacity of the network, then we should choose the parameters that
minimize the validation error or the cross-validation error, if we have a small amount of
data.

Question 19: In light of your answer to the question
above, what should one have in mind (in terms of train-
ing epochs) when training a neural network?

• First do some quick probing to test out training the network with many different
parameters to somehow systematically decrease the search domain of parameters.

• Once some decent combinations have been found, then do more large-scale training
using those (can run simultaneously) and assess the performance – either based
on logical thinking and graphical evaluation (e.g. function fitting) or on (cross)
validation error.

14

• The number of epochs should be chosen such that to minimize the (cross) validation
error.

• In general: Choose the complexity of the network based on the preference for bias-
variance trade-off and the underlying task. Consider other metrics than squared
loss function, that is, consider different regularizations.

-

Question 20 –Own Example

We figured that a network implementing the delta rule to estimate the posterior target
probability given sensory input of one or many modalities could be an interesting idea –
essentially this could be called a generalized uniclass classification. This process happens
in the superior colliculus neurons region of the brain. Training is done on simulated data
— we use a probabilistic generative model.
The delta rule would be implementing the famous Bayes’ Theorem:

p(T = 1|V = vs) =
p(V = vs|T = 1)P (T = 1)

p(V = vs|T = 0)P (T = 0) + p(V = vs|T = 1)p(T = 1)

to find the posterior probability that the target is present given a certain visual stimulus.
The denominator is called the evidence, since we can do measurements with targets
present and record how that affects the recording of the stimuli. p(T = t) terms are
called the prior, since we have to know the distribution of the targets before we wish
to compute the posterior distribution. The terms p(V = vs|T = 0) are called likelihood
functions – they measure how the presence of target affects the distribution of the visual
stimuli and it is natural to assume that given a target, the stimulus would be normally
distributed. To implement the Bayes’ rule, first initialize the parameters - like learning
rate, bias, iterations, number of inputs and outputs and likelihood function parameters
and prior probabilities. Generate the visual input space and initialize the connectivity
matrix. Implement the network using the delta-rule(sigmoidal activation). The visual
input given the target, as mentioned, are drawn from differently parametrized Normal
distributions. When plotting the activation of the output node, it should turn out that
it is basically indeed implementing the Bayes’ rule to find the posterior distribution for
the target – the posterior distribution turns out to be the logistic sigmoid of the input
stimulus – the stronger the stimulus, the more likely the target is to be present.

References

[1] Section - Should I normalize/standardize/rescale the [WWW] http://www.faqs.org/
faqs/ai-faq/neural-nets/part2/section-16.html

[2] Discriminative Model [www] https://en.wikipedia.org/wiki/Discriminative_

model

15

http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html
https://en.wikipedia.org/wiki/Discriminative_model
https://en.wikipedia.org/wiki/Discriminative_model

